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Abstract

In recent years there has been considerable progress in the application of large-eddy simulation (LES) to increasingly

complex flow configurations. Nevertheless a lot of fundamental problems still need to be solved in order to apply LES

in a reliable way to real engineering problems, where typically finite-volume codes on unstructured meshes are used. A

self-adaptive discretisation scheme, in the context of an unstructured finite-volume flow solver, is investigated in the

case of isotropic turbulence at infinite Reynolds number. The Smagorinsky and dynamic Smagorinsky sub-grid scale

models are considered. A discrete interpolation filter is used for the dynamic model. It is one of the first applications

of a filter based on the approach presented by Marsden et al. In this work, an original procedure to impose the filter

shape through a specific selection process of the basic filters is also proposed. Satisfactory results are obtained using the

self-adaptive scheme for implicit LES. When the scheme is coupled with the sub-grid scale models, the numerical dis-

sipation is shown to be dominant over the sub-grid scale component. Nevertheless the effect of the sub-grid scale models

appears to be important and beneficial, improving in particular the energy spectra. A test on fully developed channel

flow at Res = 395 is also performed, comparing the non-limited scheme with the self-adaptive scheme for implicit LES.

Once again the introduction of the limiter proves to be beneficial.

� 2005 Elsevier Inc. All rights reserved.

1. Introduction

Large-eddy simulation (LES) is an approach to solve the full 3D Navier–Stokes set of equations, which

can be located between RANS and DNS in terms of computational cost, accuracy of the solution and

amount of information available on the solved flow ([1,2] for a general presentation).
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The quality of the LES calculation is the result of the coupling of different aspects, which interact

strongly. In particular, the following aspects need to be considered for a given flow configuration:

� The discretisation scheme, which affects any LES solution but becomes also responsible of sub-grid scale

closure in the implicit LES approach.
� The sub-grid scale model (for non-implicit LES).

� The explicit filtering procedure (for the modelling approaches that require explicit filtering), and the

associated filter function (crucial for the unstructured implementation [3]).

� The mesh quality and resolution.

The interactions of these four aspects have been extensively analysed using different prospectives. In par-

ticular, each one of them could be associated with an equivalent filtering operation [4], a component of er-

ror (modelling error or numerical error [5]), or a dissipative action on the solved equations. Nevertheless the
complexity of the interaction is such that results presented are never general. Therefore, the successful com-

binations of choices (as the unsuccessful ones!) represent an interesting result, which could contribute to

improve the general understanding of LES.

The main goal of this paper is the development of a self-adaptive discretisation scheme in the context of

an unstructured finite-volume flow solver. The strategy adopted tries to minimise the contribution of arti-

ficial dissipation, relying on a sensor that detects wiggles in the flow variables.

First the scheme is tested with isotropic turbulence at infinite Reynolds number using an implicit LES

approach. This is based on the concept of the monotone-integrated large-eddy simulation (MILES) ap-
proach proposed by Boris et al. [6]. In this formulation, the energy transfer from the resolved scales to

the sub-grid scales is driven by the artificial dissipation of the discretisation scheme. The potentiality of

the implicit approach is still to be investigated from the theoretical point of view. Garnier et al. [7] have

presented poor results produced with several shock-capturing schemes on decaying isotropic turbulence,

showing how the accuracy of the MILES approach is strongly dependant on the specific discretisation

scheme used. On the other hand, many satisfactory MILES calculations have been presented during the

last decade, often involving complex configurations. Encouraging results have also been presented in the

context of an unstructured implementation (see [8]).
The interaction between the self-adaptive discretisation scheme and two different sub-grid scale models is

also investigated with isotropic turbulence at infinite Reynolds number. Two levels of mesh resolution are

considered, together with an explicit filtering procedure based on the discrete interpolation filters proposed

by Marsden et al. [12].

A comparative analysis between numerical dissipation and sub-grid scale dissipation is performed. It is

inspired by the theoretical analysis presented by Ghosal [5] and by the analysis on upwind schemes per-

formed by Sengupta and Nair [9]. Ghosal performed a quantitative evaluation of error terms and sub-

grid scale terms for an isotropic homogeneous turbulent flow, using the analytic expression of the
Von Karman model for the energy spectrum. Differentiation error and aliasing error were considered

for different finite difference schemes. The main result is the extreme importance of numerical error in

most of the configurations considered. The two main aspects which determine the relative importance

of the numerical error over the sub-grid term are the order of accuracy of the scheme and the ratio

of filter size over mesh size. In the context of a second order scheme (which is the practical choice for

the unstructured implementation), only extremely high values of the ratio of filter size over mesh size

guarantee that the sub-grid scale term is dominant. The effect of these high values would be a huge in-

crease in mesh resolution, since the filter size (and the associated filter cutoff) cannot be pushed beyond a
certain limit for a specific LES problem. In realistic applications this is not practical, and a dominance of

numerical dissipation over the sub-grid scale term is likely to appear in most of the unstructured LES

simulations.
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Qualitatively similar results were obtained by Chow and Moin [10], who extended Ghosal�s analysis

using more realistic spectra obtained with a direct numerical simulation (DNS) dataset.

These conclusions are in part mitigated by two aspects. First of all different components of error have

different behaviors in spectral space, leading to partial cancellation (as shown by Geurts [14]). In addition,

numerical dissipation and sub-grid scale terms are not identical operators in physical space or spectral
space, which means that the sub-grid scale term has the freedom to be locally dominant and to impose a

long term effect on the discretisation scheme.

Nevertheless the task of the discretisation scheme and of the sub-grid scale model is more complex and

ambitious in the context of an unstructured simulation. In principle the former should be a good candidate

for implicit LES, since it is quite likely that the role of the sub-grid scale model will not be as strong as in

calculations performed with higher-order schemes. The latter should be capable of influencing the discret-

isation scheme, guiding its effects through long term interactions. Both of these aspects will be investigated

in this paper for the discretisation scheme developed and the two sub-grid scale models implemented.
In order to assess the effect of the new discretisation scheme for wall bounded flows, a test on fully devel-

oped channel flow at friction Reynolds number Res = 395 has also been performed, comparing the original

non-limited scheme and the self-adaptive scheme for implicit LES.

The paper is organized as follows. Governing equations are presented in Section 2. The discretisation

scheme and the explicit filtering procedure are introduced in Section 3. The sub-grid scale models are pre-

sented in Section 4. Results on isotropic turbulence at infinite Reynolds number and fully developed chan-

nel flow at friction Reynolds number Res = 395 are presented in Section 5. Conclusions are drawn in

Section 6.
2. Governing equations

The LES equations are derived from the Navier–Stokes equations, removing the smallest scales through

a filtering operation. In the more general compressible case they contain several subgrid scale terms, but

many of these are usually neglected. We consider here only the terms which are kept and modelled, while

a more general derivation can be found in [15,16]. The non-dimensionalised Navier–Stokes equations in
Cartesian coordinates can therefore be expressed as:
oq
ot

þ oðquiÞ
oxi

¼ 0;

oðqujÞ
ot

þ oðquiujÞ
oxi

þ op
oxj

¼
oðsij � qsrijÞ

oxi
;

oðEÞ
ot

þ oððE þ pÞuiÞ
oxi

¼
oððsij � qsrijÞujÞ

oxi
� oqi

oxi
;

ð1Þ
where q and p denote, respectively, the filtered density, and the filtered pressure. u, v, and w denote the

Favre-filtered components of velocity. E denotes the filtered modified total internal energy (as defined in

[15]).
If we denote function g as the LES filtering procedure, the Favre-filtering operation for a generic variable

f is defined as:
f ¼ gðqf Þ
gðqÞ . ð2Þ
The system of equations needs also the equation of state of ideal gas, together with the equation defining

the heat fluxes:
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qi ¼ �ktot
oT
oxi

; ð3Þ
where T is the Favre-filtered temperature and the total thermal conductivity ktot is given by:
ktot ¼
cl
Pr

þ clr

Prt
; ð4Þ
where Pr is the Prandtl number (Pr = 0.72 for air), Prt is the turbulent Prandtl number (Prt = 0.6 for air), l
is the dynamic viscosity modelled by Sutherland�s law and lr is the eddy dynamic viscosity (lr = qmr). With
this formulation we are imposing a Boussinesq-like model for one of the sub-grid scale terms in the energy

equation, through the introduction of the turbulent Prandtl number Prt.

The viscous stress tensor s and the residual stress tensor sr are given by:
sij ¼ l
oui
oxj

þ ouj
oxi

� �
þ kdij

oui
oxi

; ð5Þ

srij ¼ uiuj � uiuj ð6Þ
with dij the Kronecker delta and the bulk viscosity k defined invoking Stokes� hypothesis:
k ¼ � 2

3
l. ð7Þ
The eddy kinematic viscosity mr and the residual stress tensor sr are either provided by the SGS model (for

LES calculations) or omitted for ILES (implicit large-eddy simulation).
3. Numerical method

The solver used is the Rolls–Royce code HYDRA [21,22]. It is an unstructured finite-volume solver with

an edge-based data structure. Time integration is performed using an explicit time-marching procedure,

based on the five-stage Runge–Kutta scheme of Martinelli [17].

The spatial discretisation scheme in HYDRA is derived from the MUSCL approach [20], where a func-
tional representation of the flow variables is used in each control volume and Riemann problems are solved

at the interfaces. The filtered Navier–Stokes equations can be recast in a semi-discrete compact form, as:
dQ
dt

þ RðQÞ ¼ 0; ð8Þ
where Q is the vector of the conservative variables and R(Q) is the residual vector of the spatial discretisa-

tion. Using a finite volume approach the integration of the inviscid and viscous terms over some control

volume X, after the application of the divergence theorem, gives:
RI
i ¼

1

V i

I
oX

FIðn;QÞ dS;

RV
i ¼ 1

V i

I
oX

FVðn;Q;rQÞ dS;
ð9Þ
where Vi is the size of the control volume (the median-dual) associated with index i, and FIðn;QÞ and

FVðn;QÞ are the inviscid and viscous fluxes in the direction of the unit vector n. For an interior grid point

the same fluxes can be discretised as:
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RI
i ¼

1

V i

X
j2Ei

F I
ijDsij;

RV
i ¼ 1

V i

X
j2Ei

F V
ijDsij;

ð10Þ
where F I
ij and F V

ij are the numerical inviscid and viscous fluxes in the direction nij associated with the edge

connecting node i to node j. Ei is the set of all nodes connected to node i via an edge and Dsij is the area

associated with the edge considered.

The inviscid flux discretisation is based on the flux-differencing ideas of Roe [18], combining central dif-

ferencing of the non-linear inviscid fluxes with a smoothing term based on one-dimensional characteristic

variables.
F I
ij ¼

1

2
FI

ijðQiÞ þFI
ijðQjÞ þ

1

3
jAijj bLlp

i � bLlp

j

� �� �
;

Aij ¼
oFI

ij

oQ
;

ð11Þ
where bLlp
is a linear transparent pseudo-Laplacian [19]:
bLlp

j ¼ bLj �rQj � bLj;

bLj ¼
X
i2Ej

1

jxi � xjj

 !�1X
i2Ej

Qi � Qj

jxi � xjj
ð12Þ
with $Qj approximated using the edge weights:
rQj ¼
X
i2Ej

1

2
Qi þ Qj

� �
nijDsij. ð13Þ
The scheme has also a shock-capturing component which is controlled by a limiter. The limiter is made of a

pressure-based coefficient multiplied by the coefficient (U) proposed by Ducros et al. [23],
U ¼
oui
oxi

� �2
oui
oxi

� �2
þ xixi þ �

; ð14Þ
where x is the vorticity vector and � is an arbitrary small number. This limiter ensures robust behavior also

on flows with strong unsteadiness. This part of the scheme will not be involved in the modifications pro-

posed in the next section and will not affect the calculations presented in Section 5. For our purposes

the scheme is therefore second order accurate.
The viscous fluxes are approximated half-way along each edge and integrated consistently with the invis-

cid fluxes around each computational cell.
3.1. Self-adaptive scheme

The discretisation scheme presented was originally developed for RANS and URANS calculations and

is too dissipative for LES (as shown in Section 5). A new version has therefore been developed, introducing

a self-adaptive limiter controlled by a sensor. A similar approach has already been successfully applied to a
LES solver [24].
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F I
ij ¼ F I;CD

ij þ SijF
I;AS
ij ; ð15Þ
F I;CD
ij and F I;AS

ij identify the central differencing component and the artificial smoothing component of the

inviscid fluxes already introduced:
F I;CD
ij ¼ 1

2
FI

ijðQiÞ þFI
ijðQjÞ

� �
;

F I;AS
ij ¼ 1

6
jAijj bLlp

i � bLlp

j

� �
.

ð16Þ
The sensor Sij (associated with the edge ij) has to be defined as a function of time and position. The idea is

to impose locally the minimum value that keeps the solution stable. A new extended 4-nodes stencil is con-

sidered for each edge. This stencil is used at each iteration to check for wiggles in pressure, density, or

velocity.

For each edge the stencil is formed selecting on each side another edge among the neighbors. The crite-

rion is to minimise the angle formed by the two edges (angles a and b in Fig. 1). In the selection process a

maximum value is imposed for a and b. When the standard stencil does not meet this condition also non-

centered stencils are considered (Fig. 2). In this way better quality stencils are obtained. This is true, for
instance, when one of the two nodes lies on a boundary, where centered stencils would be too far from

forming a straight line (Fig. 3). If along the stencil a wiggle is detected for one of the flow variables, the

local value of the sensor is increased, otherwise it is decreased. The sensor Sij at the timestep n is then eval-

uated as:
Zn
ij ¼

min Zn�1
ij þ DI

� �
; 1

h i
if a wiggle is detected for the edge ij;

max Zn�1
ij � DD

� �
; 0

h i
if a wiggle is not detected for the edge ij;

8><>:
Sn
ij ¼ CRZn

ij;

ð17Þ
Zij is defined in [0,1], while the user defined coefficient CR has a scaling effect on the sensor and can set its

upper limit to a value different from 1. DI and DD are the increment and decrement imposed on Zij when a

wiggle is detected or not detected, respectively.

The aim of this improved scheme is to perform as closely as possible to simple central differencing, with-

out incurring in any stability problem. The idea is better explained by a simple one-dimensional convective
problem. An arbitrary signal with a given spectrum (from [11]) is convected through the domain, compar-

ing the new self-adaptive scheme, pure central differencing and a TVD scheme (Fig. 4). The CR coefficient

for the self-adaptive scheme is set to 0.08 to match the same value used for the test on isotropic turbulence.

The self-adaptive scheme is behaving quite well, producing a spectrum which is closer to the one from

central differencing than the TVD scheme. Fig. 5 is comparing the self-adaptive scheme with the original

non-limited scheme (with full damping (CR = 1.0) and CR = 0.08). The improvement associated with the
α

β

m

i j

n

Fig. 1. Standard stencil for the sensor.
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Fig. 4. One-dimensional convective test, comparison of different discretisation schemes.

638 M. Ciardi et al. / Journal of Computational Physics 210 (2005) 632–655
self-adaptive scheme is evident. This new discretisation scheme is obviously a better candidate to perform

LES calculations. The aim of the tests that will be performed is to assess its potential as implicit LES meth-

od end also to determine if it could be effectively coupled with existing sub-grid scale models.

3.2. Discrete interpolation filter

The dynamic Smagorinsky sub-grid scale model introduced in the following section needs an explicit fil-

tering procedure. The approach implemented is based on the discrete interpolation filters proposed by
Marsden et al. [12,13]. This approach can be tuned to achieve a specific order of accuracy for the commu-

tation error, while retaining the possibility to use a variable filter size and unstructured grids. In this imple-

mentation, second order has been imposed to match the order of accuracy of the discretisation scheme in
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use. The filter is expressed as a linear combination of five basic filters. Each basic filter gives second order

accuracy, while the linear combination of the basic filters is optimising for the shape and the size of the

filter.

The starting point for constructing a basic filter is the definition of its moments mabc:
mabcðxÞ ¼ 1

D3ðxÞ

Z Z Z
ga1g

b
2g

c
1Gðx; gÞ dg1 dg2 dg3; ð18Þ
where G is the kernel of the filter, D is the filter size and the integration is performed over the whole three-

dimensional domain. The commutation error of a basic filter can in fact be expressed as a function of its

moments (as shown in [1]). In particular, in order to achieve second order commutation error, the following

conditions must be met:
mabcðxÞ ¼
1 if a ¼ b ¼ c ¼ 0;

0 if ðaþ bþ cÞ ¼ 1.

�
ð19Þ
A basic filter that respects these conditions can be easily constructed using four points (a tetrahedron). If x0

is the node where we want to filter the flow variables, we can consider the first order polynomial that passes

through the four nodes xA, xB, xC and xD. If we take the four interpolation weights, needed to interpolate
this polynomial on the node x0, as filtering weights (wA,wB,wC,wD), we have automatically set to zero all

the discrete first order moments:
m100 x0
� �

¼ wA xA1 � x01
� �

þ wB xB1 � x01
� �

þ wC xC1 � x01
� �

þ wD xD1 � x01
� �

¼ 0;

m010 x0
� �

¼ wA xA2 � x02
� �

þ wB xB2 � x02
� �

þ wC xC2 � x02
� �

þ wD xD2 � x02
� �

¼ 0;

m001 x0
� �

¼ wA xA3 � x03
� �

þ wB xB3 � x03
� �

þ wC xC3 � x03
� �

þ wD xD3 � x03
� �

¼ 0;

ð20Þ
We have also set to one the zeroth order moment m000:
m000 ¼ wA þ wB þ wC þ wD ¼ 1. ð21Þ
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The other condition to be met by each basic filter imposes that the central node x0 must be inside the tet-

rahedron. In order to select the basic filters for a specific node, a list of neighboring nodes is formed at first.

Among the tetrahedra which meet the above conditions, a selection is made, preferring the tetrahedra

that have the central node closer to their centroid. The number of neighbors can be changed through a con-

trol parameter and has an important effect on the final filter obtained. A small number is going to compro-
mise more on the distance between the centroid and the central node, forcing on the other hand the filter to

be more local in physical space. A large number would instead minimise the distance between the centroids

and the central node, but would also make the filter less local in physical space. In our implementation we

select in the first phase eight basic filters instead of five. In this way we are able to impose a further selection

for the best filter (which is constructed using only five basic filters).

The second phase of the process chooses the best combination of basic filters (among the 56 possibilities)

and assigns a weight to the central node and to each tetrahedron (bi). This is achieved imposing conditions

for shape and filter-size to the second order moments. If we prescribe the filter to match an equivalent iso-
tropic spherical top hat filter with filter-size D, we obtain the following values to be imposed to the second

order moments:
M200 ¼ 3

4pD3

Z 2p

0

du
Z p

2

�p
2

dh
Z D

0

r4cos3hcos2u dr ¼ 3

10
D2;

M020 ¼ 3

4pD3

Z 2p

0

du
Z p

2

�p
2

dh
Z D

0

r4cos3h sin2u dr ¼ 3

10
D2;

M002 ¼ 3

4pD3

Z 2p

0

du
Z p

2

�p
2

dh
Z D

0

r4 cos h sin2h dr ¼ 3

10
D2;

M110 ¼ 3

4pD3

Z 2p

0

du
Z p

2

�p
2

dh
Z D

0

r4cos3h cosu sinu dr ¼ 0;

M101 ¼ 3

4pD3

Z 2p

0

du
Z p

2

�p
2

dh
Z D

0

r4cos2h sin h cosu dr ¼ 0;

M011 ¼ 3

4pD3

Z 2p

0

du
Z p

2

�p
2

dh
Z D

0

r4cos2h sin h sinu dr ¼ 0.

ð22Þ
Therefore, each of the 56 possible combinations of five basic filters, among the eight initially selected, re-

sults in imposing the following system of equations:
m200
1 b1 þ m200

2 b2 þ m200
3 b3 þ m200

4 b4 þ m200
5 b5 ¼ M200;

m020
1 b1 þ m020

2 b2 þ m020
3 b3 þ m020

4 b4 þ m020
5 b5 ¼ M020;

m002
1 b1 þ m002

2 b2 þ m002
3 b3 þ m002

4 b4 þ m002
5 b5 ¼ M002;

m110
1 b1 þ m110

2 b2 þ m110
3 b3 þ m110

4 b4 þ m110
5 b5 ¼ M110;

m101
1 b1 þ m101

2 b2 þ m101
3 b3 þ m101

4 b4 þ m101
5 b5 ¼ M101;

m011
1 b1 þ m011

2 b2 þ m011
3 b3 þ m011

4 b4 þ m011
5 b5 ¼ M011;

b0 þ b1 þ b2 þ b3 þ b4 þ b5 ¼ 1;

ð23Þ
where bi is the weight associated with the ith basic filter, with the exception of b0 being the weight of the

central node that can be specified by the user. These systems are overspecified and have to be solved using

least square approximation. The selection among the 56 possible combinations is made choosing the filter

that is closer to be a positive filter. This is achieved evaluating for each combination the minimum node



M. Ciardi et al. / Journal of Computational Physics 210 (2005) 632–655 641
coefficient among the 20 nodes forming the filter, and then selecting the combination with the biggest value.

The second phase of the process, where the weights for the basic filters are computed, is computationally

negligible compared with the first phase, where the basic filters are selected. Therefore, the increased accu-

racy of this implementation has a penalization of approximately 60% in the initial selection process com-

pared with the original approach. This could be reduced compromising on the number of neighboring
nodes used during the first phase.
4. Sub-grid scale models

The set of equations presented in Section 2 leaves to the sub-grid scale model the task of defining the

residual stress tensor sr and the eddy kinematic viscosity mr. A large collection of sub-grid scale models

has been produced in the last decades ([1] presents an overview). Two sub-grid scale models are considered
in this work together with the implicit approach.

4.1. Smagorinsky model

In the Smagorinsky model, a linear eddy viscosity equation relates the residual stress tensor sr to the fil-

tered rate of strain S [25].
srij �
dij
3
srkk ¼ �2mrSij; ð24Þ

Sij ¼
1

2

oui
oxj

þ ouj
oxi

� �
. ð25Þ
The eddy kinematic viscosity mr is modelled by analogy to the mixing-length hypothesis, with a mixing

length taken proportional to the filter size D:
mr ¼ CsD
� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Sij Sij

q
; ð26Þ
where Cs is the Smagorinsky coefficient. Its value is not general and needs to be tailored to the specific kind

of flow considered. This guarantees that the right amount of resolved kinetic energy is dissipated in the

whole domain, while the same is not true locally. Moreover, the residual stress tensor sr is not modelled

correctly and only its global dissipative effects are addressed (for this reason it is classified among functional

models in [1]). For isotropic turbulence at infinite Reynolds number the theoretical value of the Smagorin-
sky coefficient Cs is 0.18.
4.2. Dynamic Smagorinsky model

The dynamic Smagorinsky model was originally introduced by Germano [26] and is based on the Sma-

gorinsky model. It provides a methodology for determining an appropriate local value of the Smagorinsky

coefficient, which is estimated using the resolved scales. It is based on Germano�s identity:
gui uj � eui euj ¼ trij �fsrij ; ð27Þ
where
srij ¼ uiuj � uiuj;

trij ¼ guiuj � eui euj . ð28Þ



642 M. Ciardi et al. / Journal of Computational Physics 210 (2005) 632–655
The tilde symbol � indicates the test filtering operation, which is associated with a filter size eD (with eD > D

and in general taken eD ¼ 2D). The tensor tr is the residual stress tensor corresponding to the test filtering

level. The left-hand side of Germano�s identity is directly computed by filtering the resolved LES velocity

field, while for the terms on the right-hand side the Smagorinsky model gives:
srij �
dij
3
srkk ¼ �2 CsD

� �2
Sij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sij Sij

q
;

trij �
dij
3
trkk ¼ �2 Cs

eD� �2fSij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fSij

fSij

q
.

ð29Þ
Substituting into Germano�s identity (Eq. 27), we obtain five independent equations for the unknown

squared Smagorinsky coefficient C2
s . These can be solved using least square approximation, as proposed

by Lilly [27]. In order to guarantee stable behavior a local averaging of C2
s is also performed. This approach

could in principle produce some backscatter, but to avoid instabilities the constant is clipped in order to

maintain positive total viscosity (kinematic viscosity m plus eddy kinematic viscosity mr).

4.3. Implicit LES

In the implicit approach the residual stress tensor sr is neglected, relying on the assumption that the dis-

cretisation scheme is capable of introducing the right amount of dissipation. The idea is based on the con-

cept of the monotone-integrated large-eddy simulation (MILES) approach proposed by Boris et al. [6]. The
general implementation uses a blend between two different mechanisms of computing the convective fluxes:

a high order flux function and a low order flux function. The latter is usually the shock-capturing compo-

nent of the scheme. In our implementation the shock-capturing component is only used to deal with com-

pressibility. The high order flux function is the second-order central differencing component, while the

dissipation is introduced by the artificial smoothing, which is controlled by a limiter (through the sensor

presented in Section 3), and it is also second-order accurate by construction.

A rigorous justification of the MILES approach, in the context of flux limiting discretisation, was pre-

sented by Fureby and Grinstein [28–30]. Imposing simplifying assumptions, they derived an expression for
the equivalent residual stress tensor, starting from an estimation of the truncation error. The analysis shows

how within the limits of the assumptions imposed, the MILES approach can be seen as a blend of a sub-

grid viscosity component with tensorial viscosity and a component similar to the Leonard tensor. The latter

is also equivalent to the sub-grid scale tensor in the scale similarity model (SSM) proposed by Bardina et al.

[31], which can be coupled with an eddy-viscosity model to produce a mixed-model.
5. Results

Two testcases have been considered: decaying isotropic turbulence and a fully developed channel flow.

First a set of calculations of decaying incompressible isotropic turbulence at infinite Reynolds number has

been performed. Simulations are initialised using a random solenoidal velocity field with Gaussian kinetic

energy spectrum:
EðkÞ ¼ k4e
�2k

2

k2
0 ; k0 ¼ 4; k2 ¼ k21 þ k22 þ k23. ð30Þ
Two different mesh resolutions are considered (323 and 643), together with the following LES approaches:

� Implicit large-eddy simulation (without any sub-grid scale model).

� Smagorinsky model.

� Dynamic Smagorinsky model.
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The filter size has been taken as twice the local edge length. The test filter size has been taken as twice the

LES filter size for the dynamic approach.

A preliminary set of calculations has been performed without any sub-grid scale model, in order to assess

the behavior of the new discretisation scheme. Three different versions of the scheme are considered:

� The original approach without limiter (CR = 1.0).

� A modified version of the original approach, where the sensor is not used, but artificial dissipation is
reduced to 8% of the original amount (CR = 0.08).

� The new self-adaptive scheme with CR = 0.08 and DI = DD = 0.2.

A calculation without any artificial dissipation contribution (CR = 0.0) was also considered, but became

unstable after few iterations as expected.

Figs. 6–8 show the time history of resolved turbulent kinetic energy, enstrophy and the compensated tur-

bulent kinetic energy spectra at the final stage of the computations, using the 323 grid. There is a significant

scatter in the theoretical values presented for the decay rate of kinetic energy. Lesieur [32] refers to values in
the range between t�1.2 and t�1.43. The two calculations with the original scheme have for a short length of

time a decay rate within the range of the theoretical values but then present a non-physical plateau. The

same non-physical plateau appears in the time histories of enstrophy. This spurious feature is removed

by the limited scheme, even if now the decay rate is a bit too high (t�1.61). The energy spectrum shows a

good behavior for the calculation with the self adaptive scheme. The slope is slightly higher than �5/3.

There is also a moderate pile up of energy at the highest wavenumbers, but the introduction of sub-grid

scale models is expected to correct this aspect. A proper tuning of the parameters controlling the limiter

could probably act in the same direction, optimising the scheme for implicit LES. This optimization has
not been performed so far. The original scheme is obviously overdissipative, even when CR is reduced to

0.08.
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Fig. 6. Time history of resolved turbulent kinetic energy – 323 grid.
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We consider now the sub-grid scale models implemented. The self-adaptive discretisation scheme is used

in all the calculations with the same setup of the previous tests (CR = 0.08, DI = DD = 0.2). The value of the

Smagorinsky coefficient is 0.18, which corresponds to its theoretical value for isotropic turbulence at infinite
Reynolds number. Fig. 9 shows the time history of the average artificial smoothing contribution. The

results are presented as percentage of the amount of dissipation introduced by the original non-limited ver-

sion of the scheme. The strong dependance of the self-adaptive discretisation scheme on the sub-grid scale

models is evident. After the initial transient all the calculations settle down to an almost constant value,
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with the dynamic Smagorinsky model producing a lower value than the Smagorinsky model. Not surpris-

ingly the implicit solution has the highest values among all the cases.

Figs. 10–12 show the time history of resolved turbulent kinetic energy, enstrophy and the compensated

turbulent kinetic energy spectra at the final stage of the computations. The two models introduced give sat-

isfactory results. They manage to remove the energy pile up at high frequencies, seen in the implicit calcu-
lation. They produce a slightly earlier decay of resolved kinetic energy and enstrophy, without affecting the

decay rate of resolved kinetic energy, which is still proportional to t�1.61.
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Fig. 10. Time history of resolved turbulent kinetic energy – 323 grid.
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Fig. 12. Compensated turbulent kinetic energy spectra at the final stage of the computations – 323 grid.
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The mesh convergence of the simulations has been investigated using a 643 grid. The setup of the dis-

cretisation scheme and of the sub-grid scale models have been maintained as for the 323 grid. Figs. 13–15

show the time history of resolved turbulent kinetic energy, enstrophy and the compensated turbulent

kinetic energy spectra at the final stage of the computations. The decay rate of resolved kinetic energy

is a bit too high for the implicit solution (t�1.68) and surprisingly is slightly worse than for the 323 grid.

Anyway the scheme has not been optimised for implicit solutions and if we consider the calculations with

sub-grid scale models, the increased resolution improves the results. The decay rate for these is in fact
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Fig. 14. Time history of enstrophy – 643 grid.
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now closer to the theoretical range (t�1.55). The energy spectra show again a moderate pile up of energy

at the highest frequencies for the implicit calculation, which is removed by the sub-grid scale models. The

slope is now close to k�5/3 on a wider range than in the calculations performed with the 323 grid. Overall

the results obtained with the 323 grid are confirmed, with the sub-grid scale models improving the quality

of the solutions.

Since the values of the decay rate of kinetic energy are showing a good trend for the calculations

performed with sub-grid scale models at different resolutions but without reaching the theoretical range,
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Fig. 15. Compensated turbulent kinetic energy spectra at the final stage of the computations – 643 grid.

648 M. Ciardi et al. / Journal of Computational Physics 210 (2005) 632–655
a single calculation has been performed using a 963 mesh with the Smagorinsky model. A comparison with

the 643 mesh is presented in Fig. 16. The decay rate improves now with the increased resolution from t�1.55

to t�1.41, showing a good improvement direction.

A significative way to assess the effects of interaction between the discretisation scheme and the sub-grid

scale models is by monitoring the effective viscosity me(k|kc). Traditionally eddy viscosities have been com-

pared with spectra computed with analytical theories of turbulence [32]. Domaradzki et al. [33] have re-

cently proposed a method of computing effective viscosity in the context of a MILES calculation. The
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Fig. 16. Time history of resolved turbulent kinetic energy – 643 and 963 grid – Smagorinsky model.
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effective viscosity is the equivalent viscosity that represents the energy transfer between the mode k and

modes located beyond the cutoff wavenumber kc. It can be defined as:
meðkjkcÞ ¼ � T ðkjkcÞ
2k2EðkÞ

; ð31Þ
where T(k|kc) is the energy transfer from the modes of magnitude k to the sub-grid modes. As for the energy

spectra, eddy viscosities are integrated over spherical shells and plotted versus the magnitude of the wave-

number. In a LES calculation, the sub-grid scale model (or the artificial dissipation for an implicit solution)

provides a dissipative contribution which should be equivalent to T(k|kc). We can define two separate com-
ponents Tsgs(k|kc) and Tnum(k|kc), associated, respectively, with the sub-grid scale model dissipation and

with the numerical dissipation introduced to stabilise the scheme. They can be seen as the Fourier trans-

form of the energy drain caused by two specific forcing terms in the resolved momentum equations: the

one associated with the sub-grid scale contribution and the one associated with the smoothing term con-

trolled by the sensor.
T sgs ¼
osrij
oxj

ui; ð32Þ

T num ¼
osasij
oxj

ui; ð33Þ
where sas is the contribution from the artificial smoothing in the momentum equation. Consequently, we
can also define two distinct effective viscosities msgse ðkjkcÞ and mnume ðkjkcÞ, which sum to a total effective vis-

cosity mtote ðkjkcÞ:
msgse ðkjkcÞ ¼ � T sgsðkjkcÞ
2k2EðkÞ

;

mnume ðkjkcÞ ¼ � T numðkjkcÞ
2k2EðkÞ

mtote ðkjkcÞ ¼ � T sgsðkjkcÞ þ T numðkjkcÞ
2k2EðkÞ

.

ð34Þ
Figs. 17 and 18 show the spectra of numerical effective viscosity mnume , sub-grid scale model effective vis-

cosity msgse , and total effective viscosity mtote for the 323 grid. The analysis of Ghosal [5] is confirmed, with the

numerical component being in general dominant over the sub-grid scale component (with the only excep-

tion of the lowest frequencies in the Smagorinsky solution). Nevertheless the role of the sub-grid scale mod-

els appears to be crucial once again. The effect of interaction between sub-grid scale models and numerical

scheme is in fact very strong, producing values of numerical eddy viscosity dramatically different for differ-

ent sub-grid scale approaches. A general agreement in the trend of the numerical component and the sub-
grid scale component is observed for both of the models. This is probably due to the fact that numerical

dissipation and sub-grid scale dissipation are triggered by similar flow features. The Smagorinsky model

produces higher values for both the numerical and the sub-grid scale component if compared with the

dynamic model. The implicit model is obviously under-dissipative on the smallest resolved scales, in agree-

ment with the energy spectra shown previously.

In order to obtain a further insight into the effect of the sub-grid scale models, a new set of calcu-

lations was started from a same set of initial flow conditions. Flow conditions at the end of the calcu-

lation with the dynamic Smagorinsky sub-grid scale model were chosen. The plots of effective viscosities
are extracted after a single time iteration and are presented in Fig. 19. The lower values produced by

the dynamic model are the consequence of the initial flow conditions being produced by a dynamic
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Smagorinsky calculation. In contrast to Fig. 18, the numerical dissipation has now a significant value

also for the smallest resolved scales. Therefore, the inability of the implicit solution to introduce a suf-

ficient amount of dissipation in this range is a consequence of the lack of a sub-grid scale component in

the long term.

In order to assess the effect of the new discretisation scheme for wall bounded flows a test on fully

developed channel flow at friction Reynolds number Res = 395 has been performed. The domain consid-

ered has dimension 2p in streamwise direction, p in sidewise direction and 2 in wall normal direction. The

mesh resolution is 64 · 64 · 64. Only implicit calculations are considered at this stage, therefore CR is
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increased to 0.3 for both of the schemes (the original without sensor and the new self-adaptive scheme),

in the attempt to compensate for the missing sub-grid scale model. DNS data from Moser et al. [34] is

used for comparison.

A calculation without any artificial smoothing contribution (CR = 0.0) was also attempted but became

unstable after few iterations. Results are presented in Figs. 20–23.
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Fig. 20. Fully developed channel flow, Res = 395, mean velocity profile in wall coordinates.
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Fig. 22. Fully developed channel flow, Res = 395, rms v velocity profile in wall coordinates.
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The self-adaptive scheme offers a considerably better comparison with the DNS data, in particular for

the rms components. The agreement with DNS is in this case quite good, in particular considering the mesh

resolution. In general, the position of the peaks and level of fluctuations are close to the DNS data. Stream-

wise fluctuations are slightly overpredicted, while fluctuations in wall-normal and sidewise directions are

underpredicted, as expected with this mesh resolution. Results could probably be further improved intro-

ducing a sub-grid scale model or using a finer mesh. The original scheme proves once again to be too

dissipative.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

w
rm

s/
U

0

y+

 DNS data 

 Original scheme

 Self adaptive scheme

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

w
rm

s/
U

0

y+

 DNS data 

 Original scheme

 Self adaptive scheme

Fig. 23. Fully developed channel flow, Res = 395, rms w velocity profile in wall coordinates.

M. Ciardi et al. / Journal of Computational Physics 210 (2005) 632–655 653
6. Conclusions

A self-adaptive discretisation scheme in the context of an unstructured finite-volume flow solver has been

introduced. The strategy adopted tries to minimise the contribution of artificial dissipation, relying on a

sensor that detects wiggles in the flow variables. Tests on decaying isotropic turbulence at infinite Reynolds
number have been performed comparing this new scheme with the original non-limited version. Encourag-

ing results have been obtained. When used for implicit LES, the original scheme appears to be overdissi-

pative, preventing any sub-grid scale model from producing a proper LES solution. On the other hand,

the new scheme produces considerably better resolved kinetic energy and enstrophy time histories. The en-

ergy spectra present an extensive region in good agreement with the theoretical slope of the inertial range

and a moderate energy pile up at the highest resolved frequency. A specific tuning of the scheme could

probably improve this aspect, producing better implicit solutions.

The Smagorinsky and the dynamic Smagorinsky sub-grid scale models have been implemented and cou-
pled with the self-adaptive discretisation scheme. Both of the models improve significantly the results. They

manage to produce the right amount of dissipation for the highest resolved frequencies and to some extent

to improve the time history of resolved kinetic energy.

An explicit filter has been used for the dynamic model. It is one of the first applications of a dis-

crete interpolation filter based on the approach presented by Marsden et al. An original procedure

to impose the filter shape, through a specific selection process of the basic filters, has also been

proposed.

Overall the main conclusion drawn from the tests on decaying isotropic turbulence is the fact that the
strong effect of the models is produced despite the numerical dissipation being dominant over the sub-grid

scale dissipation (as expected for a second-order unstructured implementation).

A test on fully developed channel flow at Res = 395 was also performed using implicit LES, in order to

assess the effect of the new discretisation scheme for wall bounded flows. Once again the introduction of the

limiter proved to be beneficial.
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